Calculate the torque developed by a motor that delivers 200 hp rotation at 3600 rpm. Use the Torque value to determine the diameter of a solid steel shaft with an allowable shear stress of 20,520 psi.

Respuesta :

Solution :

Given:

Power, P = 200 hp

              = 110000 lbf ft/s

Speed, N = 3600 rpm

Power , [tex]$P=\frac{2 \pi NT}{60}$[/tex]

∴ Torque, [tex]$T = \frac{60 P}{2 \pi N}$[/tex]

[tex]$T = \frac{60 \times 110000}{2 \pi \times 3600}$[/tex]

T = 291.93 lb -ft

[tex]$T_{allow} = 20,250 \ psi$[/tex] ---- allowable shear stress

Therefore, torque , T = 391.93 lb-ft

                              T   = 291.93 x 12 lb-in

∴ T 3503.16 lb-in

Now from the Torsion formula,

[tex]$\frac{T}{J}=\frac{T_{allow}}{ r}$[/tex]

Here, [tex]$r=\frac{d}{2} ; \ \ \ J=\frac{\pi d^4}{32}$[/tex]   ---- polar moment of inertia.

∴ [tex]$\frac{T}{\frac{\pi d^4}{32}}=\frac{T_{allow}}{ d/2}$[/tex]

[tex]$T_{allow}=\frac{16 T}{\pi d^3}$[/tex]

[tex]$\pi d^3=\frac{16 \times 3503.16}{20520}$[/tex]

[tex]$\pi d^3 = 2.7315$[/tex]

[tex]$d^3 = 0.8699$[/tex]

or [tex]$d= (0.8699)^{1/3}$[/tex]

d = 0.9546 in

Therefore the diameter of the shaft is 0.9546 in.