Respuesta :
Answer:
[tex]\boxed{x = 4, ~y = -1,~ and~z = 3}[/tex]
.
Step-by-step explanation:
(eq-1) → x + y + z = 6
(eq-2) → x - y + z = 8
(eq-3) → x + y - z = 0
.
Eliminate eq-1 and eq-3
[tex]x + y + z = 6[/tex]
x + y - z = 0
[tex]2z = 6[/tex]
[tex]z = \frac{6}{2}[/tex]
[tex]z = 3[/tex]
.
Eliminate eq-1 and qe-2
[tex]x + y + z = 6[/tex]
x - y + z = 8
[tex]2y = -2[/tex]
[tex]y = \frac{-2}{2}[/tex]
[tex]y = -1[/tex]
.
Substitute the value of z and y to on of equations
[tex]x + y + z = 6[/tex]
[tex]x + (-1) + 3 = 6[/tex]
[tex]x + 2 = 6[/tex]
[tex]x = 6 - 2[/tex]
[tex]x = 4[/tex]
Answer:
The solution for the following system is: [tex]\mathbf{x=4, y=-1, z=3}[/tex]
Step-by-step explanation:
We need to find the solution to the following system.
[tex]x+y+z=6 \ and \ x-y+z=8 \ and \ x+y-z=0[/tex]
Let:
[tex]x+y+z=6 --eq(1)\\ x-y+z=8 --eq(2)\\ x+y-z=0--eq(3)[/tex]
Adding eq(1) and eq(2)
[tex]x+y+z=6 \\x-y+z=8 \\-------\\2x+2z=14 --eq(4)[/tex]
Adding eq(2) and eq(3)
[tex]x-y+z=8 \\ x+y-z=0\\-------\\2x=8\\x=8/2\\x=4[/tex]
We get value of x=4
Now, putting value of x in eq(4) to find value of z
[tex]2x+2z=14\\Put x=4\\2(4)+2z=14\\8+2z=14\\2z=14-8\\2z=6\\z=6/2\\z=3[/tex]
We get value of z=3
Now, putting value of x and z in eq(1) to find value of y
[tex]x+y+z=6\\Put \ x=4, z=3\\4+y+3=6\\y+7=6\\y=6-7\\y=-1[/tex]
So, value of y=-1
The solution for the following system is: [tex]\mathbf{x=4, y=-1, z=3}[/tex]