In ΔFGH, \text{m}\angle F = (6x-14)^{\circ}m∠F=(6x−14) ∘ , \text{m}\angle G = (4x-8)^{\circ}m∠G=(4x−8) ∘ , and \text{m}\angle H = (x+15)^{\circ}m∠H=(x+15) ∘ . Find \text{m}\angle F.M∠F.

Respuesta :

Answer:

[tex]\angle F =\bold{88^\circ}[/tex]

Step-by-step explanation:

Given a [tex]\triangle FGH[/tex] with the following angles:

[tex]\text{m}\angle F = (6x-14)^{\circ}[/tex]

[tex]\text{m}\angle G = (4x-8)^{\circ}[/tex]

[tex]\text{m}\angle H = (x+15)^{\circ}[/tex]

To find:

[tex]\text{m}\angle F[/tex] = ?

Solution:

Here, we can simply use the angle sum property of a triangle to find the value of [tex]\text{m}\angle F[/tex].

As per the angle sum property of a triangle, the sum of all the interior angles a triangle is equal to [tex]180^\circ[/tex].

[tex]\angle F + \angle G + \angle H = 180^\circ[/tex]

Putting all the given values in the above equation, we get:

[tex](6x-14)^{\circ} + (4x-8)^{\circ} + (x+15)^{\circ} = 180^\circ\\\Rightarrow 11x-7=180^\circ\\\Rightarrow 11x=180+7\\\Rightarrow 11x=187\\\Rightarrow x = \bold{17}[/tex]

Putting the value of [tex]x[/tex] in [tex]\angle F[/tex]

[tex]\text{m}\angle F = (6x-14)^\circ\\\Rightarrow \text{m}\angle F = (6\times 17-14)^\circ\\\Rightarrow \text{m}\angle F = \bold{88^\circ}[/tex]