Respuesta :

Answer:

The equation of the line is:

[tex]y=\frac{2}{5}x+1[/tex]

Step-by-step explanation:

Given the points

  • (-5, -1)
  • (5, 3)

Finding the slope between points

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-5,\:-1\right),\:\left(x_2,\:y_2\right)=\left(5,\:3\right)[/tex]

[tex]m=\frac{3-\left(-1\right)}{5-\left(-5\right)}[/tex]

[tex]m=\frac{2}{5}[/tex]

Using the point-slope form to find the line equation

[tex]y-y_1=m\left(x-x_1\right)[/tex]

substituting the values m = 2/5 and the point (5, 3)

[tex]y-3=\frac{2}{5}\left(x-5\right)[/tex]

Add 3 to both sides

[tex]y-3+3=\frac{2}{5}\left(x-5\right)+3[/tex]

[tex]y=\frac{2}{5}x+1[/tex]

Thus, the equation of the line is:

[tex]y=\frac{2}{5}x+1[/tex]