Respuesta :

Answer:

we conclude that:

[tex]\left(5^{-2}\right)^2=5^2\cdot \:\:\:5^{-6}=\frac{1}{5}\cdot \:\:\frac{1}{5}\cdot \:\:\frac{1}{5}\cdot \:\:\frac{1}{5}[/tex]

Hence, options A and D are true.

Step-by-step explanation:

Given the expression

[tex]\frac{1}{5}\cdot \frac{1}{5}\cdot \frac{1}{5}\cdot \frac{1}{5}[/tex]

[tex]\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d}[/tex]

[tex]\frac{1}{5}\cdot \frac{1}{5}\cdot \frac{1}{5}\cdot \frac{1}{5}=\frac{1\cdot \:\:1\cdot \:\:1\cdot \:\:1}{5\cdot \:\:5\cdot \:\:5\cdot \:\:5}[/tex]

                 [tex]=\frac{1}{5\cdot \:5\cdot \:5\cdot \:5}[/tex]

                 [tex]=\frac{1}{5^4}[/tex]

                 [tex]=\frac{1}{625}[/tex]

Checking options B and C:

Option B

[tex]\left(5^{-4}\right)^0=1[/tex]      

Option C

[tex]\frac{5^1}{5^4}=\frac{5}{625}=\frac{1}{125}[/tex]

Thus, options B and C are not equivalent!

Checking Option A

Option A

[tex]\left(5^{-2}\right)^2[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc},\:\quad \:a\ge 0[/tex]

[tex]\left(5^{-2}\right)^2=5^{-2\cdot \:2}[/tex]

           [tex]=5^{-4}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^{-b}=\frac{1}{a^b}[/tex]

           [tex]=\frac{1}{5^4}[/tex]

           [tex]=\frac{1}{625}[/tex]

Now, checking option D

Option D

[tex]5^2\cdot \:5^{-6}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^{b+c}[/tex]

[tex]5^2\cdot 5^{-6}=5^{2-6}[/tex]

            [tex]=5^{-4}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^{-b}=\frac{1}{a^b}[/tex]

            [tex]=\frac{1}{5^4}[/tex]

            [tex]=\frac{1}{625}[/tex]

Therefore, we conclude that:

[tex]\left(5^{-2}\right)^2=5^2\cdot \:\:\:5^{-6}=\frac{1}{5}\cdot \:\:\frac{1}{5}\cdot \:\:\frac{1}{5}\cdot \:\:\frac{1}{5}[/tex]

Hence, options A and D are true.