Which set of ordered pairs (x,y)(x,y) could represent a linear function? \mathbf{A}= A= \,\,\left\{(2, 9),\,\,(4, 5),\,\,(6, 1),\,\,(7, -1)\right\} {(2,9),(4,5),(6,1),(7,−1)} \mathbf{B}= B= \,\,\left\{(-1, -8),\,\,(0, -3),\,\,(1, 3),\,\,(2, 8)\right\} {(−1,−8),(0,−3),(1,3),(2,8)} \mathbf{C}= C= \,\,\left\{(-9, 5),\,\,(-3, 3),\,\,(3, 0),\,\,(9, -2)\right\} {(−9,5),(−3,3),(3,0),(9,−2)} \mathbf{D}= D= \,\,\left\{(1, -8),\,\,(2, -6),\,\,(3, -3),\,\,(4, 0)\right\} {(1,−8),(2,−6),(3,−3),(4,0)}

Respuesta :

Question:

Which set of ordered pairs (x,y) could represent a linear function?

[tex]\mathbf{A}= \,\,\left\{(2, 9),\,\,(4, 5),\,\,(6, 1),\,\,(7, -1)\right\}[/tex]

[tex]\mathbf{B}= \,\,\left\{(-1, -8),\,\,(0, -3),\,\,(1, 3),\,\,(2, 8)\right\}[/tex]

[tex]\mathbf{C}= \,\,\left\{(-9, 5),\,\,(-3, 3),\,\,(3, 0),\,\,(9, -2)\right\}[/tex]

[tex]\mathbf{D}= \,\,\left\{(1, -8),\,\,(2, -6),\,\,(3, -3),\,\,(4, 0)\right\}[/tex]

Answer:

[tex]\mathbf{A}= \,\,\left\{(2, 9),\,\,(4, 5),\,\,(6, 1),\,\,(7, -1)\right\}[/tex]

Step-by-step explanation:

Given

Ordered pairs A - D

Required

Which represents a linear function?

To do this, we simply calculate the slope (m) of each ordered pairs.

[tex]m = \frac{y_2 - y_1}{x_2-x_1}[/tex]

Considering A:

[tex]\mathbf{A}= \,\,\left\{(2, 9),\,\,(4, 5),\,\,(6, 1),\,\,(7, -1)\right\}[/tex]

Consider the following pairs

[tex](x_1,y_1) = (2,9)[/tex] and [tex](x_2,y_2) = (4,5)[/tex]

[tex]m = \frac{5 - 9}{4 -2} = \frac{-4}{2} = -2[/tex]

Consider the another pairs

[tex](x_1,y_1) = (2,9)[/tex] and [tex](x_2,y_2) = (6,1)[/tex]

[tex]m = \frac{1 - 9}{6 -2} = \frac{-8}{4} = -2[/tex]

Consider the another pairs

[tex](x_1,y_1) = (2,9)[/tex] and [tex](x_2,y_2) = (7,-1)[/tex]

[tex]m = \frac{-1 - 9}{7 -2} = \frac{-10}{5} = -2[/tex]

The slope is uniform all through.

i.e.

[tex]m = -2[/tex]

Hence, this can be a linear function

Considering B:

[tex]\mathbf{B}= \,\,\left\{(-1, -8),\,\,(0, -3),\,\,(1, 3),\,\,(2, 8)\right\}[/tex]

Consider the following pairs

[tex](x_1,y_1) = (-1,-8)[/tex] and [tex](x_2,y_2) = (0,-3)[/tex]

[tex]m = \frac{-3 - (-8)}{0 - (-1)} = \frac{-3 +8}{0 +1} = \frac{5}{1} = 5[/tex]

Consider the another pairs

[tex](x_1,y_1) = (-1,-8)[/tex] and [tex](x_2,y_2) = (1,3)[/tex]

[tex]m = \frac{3 - (-8)}{1 - (-1)} = \frac{3 +8}{1 +1} = \frac{11}{2} = 5.5[/tex]

The calculated slopes are not equal.

i.e.

[tex]m = 5[/tex] and [tex]m = 5.5[/tex]

Hence, this can't be a linear function

Considering C:

[tex]\mathbf{C}= \,\,\left\{(-9, 5),\,\,(-3, 3),\,\,(3, 0),\,\,(9, -2)\right\}[/tex]

Consider the following pairs

[tex](x_1,y_1) = (-9,5)[/tex] and [tex](x_2,y_2) = (-3,3)[/tex]

[tex]m=\frac{3-5}{-3-(-9)} = \frac{3-5}{-3+9} = \frac{-2}{6} = -\frac{1}{3}[/tex]

Consider the another pairs

[tex](x_1,y_1) = (-9,5)[/tex] and [tex](x_2,y_2) = (3,0)[/tex]

[tex]m=\frac{0-5}{3-(-9)} = \frac{0-5}{3+9} = \frac{-5}{12} = -\frac{5}{12}[/tex]

The calculated slopes are not equal.

i.e.

[tex]m = -\frac{5}{12}[/tex] and [tex]m = -\frac{1}{3}[/tex]

Hence, this can't be a linear function

Considering D:

[tex]\mathbf{D}= \,\,\left\{(1, -8),\,\,(2, -6),\,\,(3, -3),\,\,(4, 0)\right\}[/tex]

Consider the following pairs

[tex](x_1,y_1) = (1,-8)[/tex] and [tex](x_2,y_2) = (2,-6)[/tex]

[tex]m = \frac{-6 - (-8)}{2 - 1} = \frac{6 + 8}{1} = \frac{14}{1} = 14[/tex]

Consider the another pairs

[tex](x_1,y_1) = (1,-8)[/tex] and [tex](x_2,y_2) = (3,-3)[/tex]

[tex]m = \frac{3 - (-8)}{-3 - 1} = \frac{3 + 8}{-4} = \frac{11}{-4} = -\frac{11}{4}[/tex]

The calculated slopes are not equal.

i.e.

[tex]m = -\frac{11}{4}[/tex] and [tex]m = 14[/tex]

Hence, this can't be a linear function

From the calculations above:

Only (A) can be a linear function

Answer:

Step-by-step explanation: