Respuesta :

Answer/Step-by-step explanation:

✔️Find k:

Reference angle = 60°

Hypotenuse = k

Opposite = 9

Therefore, using trigonometric ratio, we have:

[tex] sin(60) = \frac{9}{k} [/tex]

Multiply both sides by k

[tex] k*sin(60) = 9 [/tex]

Divide both sides by sin(60)

[tex] k = \frac{9}{sin(60)} [/tex]

[tex] k = \frac{9}{\frac{\sqrt{3}}{2}} [/tex]

[tex] k = 9*\frac{2}{\sqrt{3}} [/tex]

[tex] k = \frac{18}{\sqrt{3}} [/tex]

Rationalize

[tex] k = \frac{18*\sqrt{3}}{\sqrt{3}*\sqrt{3}} [/tex]

[tex] k = \frac{18\sqrt{3}}{3} [/tex]

[tex] k = 6\sqrt{3} [/tex]

✔️Find f:

Reference angle = 60°

Opposite = 9

Adjacent = f

Therefore, using trigonometric ratio, we have:

[tex] tan(60) = \frac{9}{f} [/tex]

Multiply both sides by f

[tex] f*tan(60) = 9 [/tex]

Divide both sides by tan(60)

[tex] f = \frac{9}{tan(60)} [/tex]

[tex] k = \frac{9}{\sqrt{3}} [/tex]

Rationalize

[tex] k = \frac{9*\sqrt{3}}{\sqrt{3}*\sqrt{3}} [/tex]

[tex] k = \frac{9\sqrt{3}}{3} [/tex]

[tex] k = 3\sqrt{3} [/tex]