Answer:
[tex]1.159\%[/tex]
Step-by-step explanation:
Given: Principal or P [tex]=\textrm{Rs }60,000[/tex].
Rate or R [tex]=10\%[/tex] per annum compounded annually.
Time or T [tex]=2[/tex] years.
To find: Percentage difference between compound interest of first year and second year.
Solution:
First year interest [tex]=\frac{\textrm{P}\times \textrm{R}\times \textrm{T}}{100}=\frac{60000\times 10\times 1}{100}=\textrm{Rs }6000[/tex].
First year amount [tex]=\textrm{Rs }60,000+\textrm{Rs }6,000=\textrm{Rs }66,000[/tex].
For the second year, the interest is compounded semi-annually.
So, time is doubled and the rate is halved.
Second year compounded amount [tex]=66,000\times [1+\frac{10}{2\times 100}]^2=66,000\times1.1025=\textrm{Rs }72,765[/tex].
Second year compound interest [tex]=\textrm{Rs }72,765-\textrm{Rs }66,000=\textrm{Rs }6,765[/tex].
Difference in interest of first and second year [tex]=\textrm{Rs }6,765-\textrm{Rs }6,000=\textrm{Rs }765[/tex].
Percentage difference [tex]=\frac{765}{66000}\times 100\%=1.159\%[/tex].
Hence, the percentage difference between compound interest of first year and second year is [tex]1.159\%[/tex].