Respuesta :
Answer:
Step-by-step explanation:
Given that:
P(Y) = ky
where;
y =1,2,...7
To find the value of c or k (constant)
[tex]\sum P(Y) = 1[/tex]
[tex]\sum \limits_{y \to 1}^7 k*y = 1[/tex]
= k(1+2+3+4+5+6+7) = 1
28k = 1
[tex]k = \dfrac{1}{28}[/tex]
b) The required probability is P ( X ≤ 3)
[tex]P(X \le 3) = \sum \limits^3_{y=1 } P(y)[/tex]
[tex]P(X \le 3) = \sum \limits^3_{y=1 } \dfrac{1}{28}(y)[/tex]
[tex]P(X \le 3) = \dfrac{1}{28} (1 +2+3)[/tex]
[tex]P(X \le 3) = \dfrac{6}{28}[/tex]
P ( X ≤ 3) = 0.2143
c) The required probability P(2 ≤ Y ≤ 4)
[tex]P(2 \le Y \le 4) = \sum \limits ^4_{y=2} P(Y)[/tex]
[tex]P(2 \le Y \le 4) = \sum \limits ^4_{y=2} \dfrac{1}{28}(Y)[/tex]
[tex]P(2 \le Y \le 4) = \dfrac{1}{28}(2+3+4)[/tex]
[tex]P(2 \le Y \le 4) = 0.3214[/tex]
d) The required probability:
[tex]P(X) = \dfrac{x^2}{50} ; \ \ \ \ where; \ x= 1,2,...5[/tex]
[tex]\sum \limits ^5_{y =1} P(Y)= \sum \limits ^5_{y =1} \dfrac{1}{50}(x)^2[/tex]
[tex]\sum \limits ^5_{y =1} P(Y)= \sum \limits ^5_{y =1} \dfrac{1}{50}(1+4+9+16+25)[/tex]
[tex]\sum \limits ^5_{y =1} P(Y)=1.1[/tex]