Respuesta :
Parts per million of a solution is the mass fraction. It denotes the amount of one substance in one million parts of the other. Now, we can calculate the mass of the ethanol solution using its density and volume.
mass = density x volume
= 0.785 x 225
= 176.625 g
0.000333 : 176.625 = x : 1,000,000
x = (0.000333/176.625) * 1000000
x = 1.89 parts per million
mass = density x volume
= 0.785 x 225
= 176.625 g
0.000333 : 176.625 = x : 1,000,000
x = (0.000333/176.625) * 1000000
x = 1.89 parts per million
Answer:
[tex]4.45\times 10^{-6} M[/tex] is the concentration of the solution in molarity.
The concentration of fluorescein in solution is 1.88 ppm.
Explanation:
[tex]Molarity=\frac{Moles}{Volume(L)}[/tex]
Moles of fluorescein = [tex]\frac{0.000333 g}{332.32 g/mol}=1.002\times 10^{-6} mol[/tex]
Volume of the fluorescien ethanol solution = 225 mL = 0.225 L
1 mL = 0.001 L
Molarity of the solution :
[tex]\frac{1.002\times 10^{-6} mol}{0.225 L}=4.45\times 10^{-6} M[/tex]
[tex]4.45\times 10^{-6} M[/tex] is the concentration of the solution in molarity.
[tex]\text{ppm}=\frac{\text{Mass of solute}}{\text{Mass of solution}}\times 10^6[/tex]
Both the masses are in grams.
Mass of solute that is flouroscein = 0.000333 g
Mass of ethanol = m
Density of the ethanol = d = 0.785 g/mL
Volume of the ethanol = 225 mL
[tex]m=0.785 g/mL\times 225 mL=176.625 g\approx 177 g[/tex]
Mass of solution = 0.000333 g + 177 g = 177.000333 g
Concentration in ppm:
[tex]\frac{0.000333 g}{177.000333 g}\times 10^6=1.88[/tex]
The concentration of fluorescein in solution is 1.88 ppm.