Respuesta :
Answer:
[tex]\displaystyle f'(1) = \frac{3}{2}[/tex]
[tex]\displaystyle f''(1) = \frac{3}{4}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra II
- Exponential Rule [Rewrite]: [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
- Exponential Rule [Root Rewrite]: [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]
Calculus
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Derivative Rule [Quotient Rule]: [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]
Step-by-step explanation:
Step 1: Define
f(x) = x√x
f'(1) is x = 1 for 1st derivative
f''(1) is x = 1 for 2nd derivative
Step 2: Differentiate
- [1st Derivative] Product Rule: [tex]\displaystyle f'(x) = \frac{d}{dx}[x]\sqrt{x} + x\frac{d}{dx}[\sqrt{x}][/tex]
- [1st Derivative] Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle f'(x) = \frac{d}{dx}[x]\sqrt{x} + x\frac{d}{dx}[x^{\frac{1}{2}}][/tex]
- [1st Derivative] Basic Power Rule: [tex]\displaystyle f'(x) = (1 \cdot x^{1 - 1})\sqrt{x} + x(\frac{1}{2}x^{\frac{1}{2}-1})[/tex]
- [1st Derivative] Simply Exponents: [tex]\displaystyle f'(x) = (1 \cdot x^0)\sqrt{x} + x(\frac{1}{2}x^{\frac{-1}{2}})[/tex]
- [1st Derivative] Simplify: [tex]\displaystyle f'(x) = \sqrt{x} + x(\frac{1}{2}x^{\frac{-1}{2}})[/tex]
- [1st Derivative] Rewrite [Exponential Rule - Rewrite]: [tex]\displaystyle f'(x) = \sqrt{x} + x(\frac{1}{2x^{\frac{1}{2}}})[/tex]
- [1st Derivative] Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle f'(x) = \sqrt{x} + x(\frac{1}{2\sqrt{x}})[/tex]
- [1st Derivative] Multiply: [tex]\displaystyle f'(x) = \sqrt{x} + \frac{x}{2\sqrt{x}}[/tex]
- [2nd Derivative] Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle f'(x) = x^{\frac{1}{2}} + \frac{x}{2x^{\frac{1}{2}}}[/tex]
- [2nd Derivative] Basic Power Rule/Quotient Rule [Derivative Property]: [tex]\displaystyle f''(x) = \frac{1}{2}x^{\frac{1}{2} - 1} + \frac{\frac{d}{dx}[x](2x^{\frac{1}{2}}) - x\frac{d}{dx}[2x^{\frac{1}{2}}]}{(2x^{\frac{1}{2}})^2}[/tex]
- [2nd Derivative] Simplify/Evaluate Exponents: [tex]\displaystyle f''(x) = \frac{1}{2}x^{\frac{-1}{2}} + \frac{\frac{d}{dx}[x](2x^{\frac{1}{2}}) - x\frac{d}{dx}[2x^{\frac{1}{2}}]}{4x}[/tex]
- [2nd Derivative] Rewrite [Exponential Rule - Rewrite]: [tex]\displaystyle f''(x) = \frac{1}{2x^{\frac{1}{2}}} + \frac{\frac{d}{dx}[x](2x^{\frac{1}{2}}) - x\frac{d}{dx}[2x^{\frac{1}{2}}]}{4x}[/tex]
- [2nd Derivative] Basic Power Rule: [tex]\displaystyle f''(x) = \frac{1}{2x^{\frac{1}{2}}} + \frac{(1 \cdot x^{1 - 1})(2x^{\frac{1}{2}}) - x(\frac{1}{2} \cdot 2x^{\frac{1}{2} - 1})}{4x}[/tex]
- [2nd Derivative] Simply Exponents: [tex]\displaystyle f''(x) = \frac{1}{2x^{\frac{1}{2}}} + \frac{(1 \cdot x^0)(2x^{\frac{1}{2}}) - x(\frac{1}{2} \cdot 2x^{\frac{-1}{2}})}{4x}[/tex]
- [2nd Derivative] Simplify: [tex]\displaystyle f''(x) = \frac{1}{2x^{\frac{1}{2}}} + \frac{2x^{\frac{1}{2}} - x(\frac{1}{2} \cdot 2x^{\frac{-1}{2}})}{4x}[/tex]
- [2nd Derivative] Multiply: [tex]\displaystyle f''(x) = \frac{1}{2x^{\frac{1}{2}}} + \frac{2x^{\frac{1}{2}} - x(x^{\frac{-1}{2}})}{4x}[/tex]
- [2nd Derivative] Rewrite [Exponential Rule - Rewrite]: [tex]\displaystyle f''(x) = \frac{1}{2x^{\frac{1}{2}}} + \frac{2x^{\frac{1}{2}} - x(\frac{1}{x^{\frac{1}{2}}})}{4x}[/tex]
- [2nd Derivative] Multiply: [tex]\displaystyle f''(x) = \frac{1}{2x^{\frac{1}{2}}} + \frac{2x^{\frac{1}{2}} - \frac{x}{x^{\frac{1}{2}}}}{4x}[/tex]
- [2nd Derivative] Simplify: [tex]\displaystyle f''(x) = \frac{1}{2x^{\frac{1}{2}}} + \frac{x^{\frac{1}{2}}}{4x}[/tex]
- [2nd Derivative] Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle f''(x) = \frac{1}{2\sqrt{x}} + \frac{\sqrt{x}}{4x}[/tex]
Step 3: Evaluate
- [1st Derivative] Substitute in x: [tex]\displaystyle f'(1) = \sqrt{1} + \frac{1}{2\sqrt{1}}[/tex]
- [1st Derivative] Evaluate Roots: [tex]\displaystyle f'(1) = 1 + \frac{1}{2(1)}[/tex]
- [1st Derivative] Multiply: [tex]\displaystyle f'(1) = 1 + \frac{1}{2}[/tex]
- [1st Derivative] Add: [tex]\displaystyle f'(1) = \frac{3}{2}[/tex]
- [2nd Derivative] Substitute in x: [tex]\displaystyle f''(1) = \frac{1}{2\sqrt{1}} + \frac{\sqrt{1}}{4(1)}[/tex]
- [2nd Derivative] Evaluate Roots: [tex]\displaystyle f''(1) = \frac{1}{2(1)} + \frac{1}{4(1)}[/tex]
- [2nd Derivative] Multiply: [tex]\displaystyle f''(1) = \frac{1}{2} + \frac{1}{4}[/tex]
- [2nd Derivative] Add: [tex]\displaystyle f''(1) = \frac{3}{4}[/tex]