Help! <3Select all of the potential solution(s) of the equation 2log5x = log54.

Answer:
x = 2
Step-by-step explanation:
[tex]2log_5 x = log_5 4 \\ \\ log_5 {x}^{2} = log_5 4 \\ \\ \implies \: {x}^{2} = 4 \\ \\ \implies \: x = \pm \sqrt{4} \\ \\ \implies \: x = \pm 2 \\ \\ x = - 2, \: \: x = 2[/tex]
Since, anti-logarithm must be greater than zero.
[tex] \therefore x\neq - 2[/tex]
[tex] \implies x = 2[/tex]