In DEF, sin D = 24/26 What is cos E?
A. 24 26
B. 10 24
C. 10 26
D. 26 10

Answer:
your answer will be option A. 24/26
Step-by-step explanation:
hope it helps....
In [tex]\triangle[/tex] DEF, [tex]SinD = \frac{24}{26}[/tex] , then [tex]Cos \ E[/tex] will be equals to [tex]\frac{24}{26}[/tex] .
Trigonometric ratios are defined as the sides and angles of a right-angled triangle are dealt with in Trigonometry.
We have,
[tex]\triangle[/tex] DEF,
[tex]SinD = \frac{24}{26}[/tex]
We know that,
[tex]SinD=\frac{Perpendicular}{Hypotenuse}=\frac{EF}{ED}[/tex] and [tex]CosE=\frac{EF}{ED}[/tex]
Using Pythagoras Theorem,
[tex]P^{2} +B^{2} =H^{2}[/tex]
i.e.
[tex]EF^2+FD^2=EF^2[/tex]
[tex]24^{2} +FD^2=26^2[/tex]
[tex]FD^2=676-576[/tex]
[tex]FD=10[/tex]
But when we look from [tex]\angle E[/tex] for [tex]Cos E[/tex] then,
[tex]CosE=\frac{EF}{ED}[/tex]
so,
[tex]CosE=\frac{24}{26}[/tex]
So, the value of [tex]CosE=\frac{24}{26}[/tex] is derived using the Trigonometric ratios.
Hence, we can say that In [tex]\triangle[/tex] DEF, [tex]SinD = \frac{24}{26}[/tex] , then [tex]Cos \ E[/tex] will be equals to [tex]\frac{24}{26}[/tex] .
To know more about Trigonometric ratios click here
https://brainly.com/question/13724581
#SPJ2