Respuesta :

Answer:

your answer will be option A. 24/26

Step-by-step explanation:

hope it helps....

In [tex]\triangle[/tex] DEF,  [tex]SinD = \frac{24}{26}[/tex] ,  then [tex]Cos \ E[/tex] will be equals to [tex]\frac{24}{26}[/tex] .

What are trigonometric ratios ?

Trigonometric ratios are defined as the sides and angles of a right-angled triangle are dealt with in Trigonometry.

We have,

[tex]\triangle[/tex] DEF,

[tex]SinD = \frac{24}{26}[/tex]

We know that,

[tex]SinD=\frac{Perpendicular}{Hypotenuse}=\frac{EF}{ED}[/tex]  and  [tex]CosE=\frac{EF}{ED}[/tex]

Using Pythagoras Theorem,

[tex]P^{2} +B^{2} =H^{2}[/tex]

i.e.

[tex]EF^2+FD^2=EF^2[/tex]

[tex]24^{2} +FD^2=26^2[/tex]

[tex]FD^2=676-576[/tex]

[tex]FD=10[/tex]

But when we look from [tex]\angle E[/tex] for [tex]Cos E[/tex] then,

[tex]CosE=\frac{EF}{ED}[/tex]

so,

[tex]CosE=\frac{24}{26}[/tex]

So, the value of    [tex]CosE=\frac{24}{26}[/tex] is derived using the Trigonometric ratios.

Hence, we can say that In [tex]\triangle[/tex] DEF,  [tex]SinD = \frac{24}{26}[/tex] ,  then [tex]Cos \ E[/tex] will be equals to [tex]\frac{24}{26}[/tex] .

To know more about Trigonometric ratios click here

https://brainly.com/question/13724581

#SPJ2