Respuesta :

Idea63

Answer: C

Sn= 7(1-0.7n)

Step-by-step explanation:

The rule that defines S for [tex]a_n = 3(0.7)^n[/tex] is:

[tex]S_n = 7(1 - 0.7^n)[/tex]

The rule of S means that we calculate the rule that defines the sum of n terms of the geometric progression.

Given that:

[tex]a_n = 3(0.7)^n[/tex]

Rewrite as:

[tex]a_n = 3 (0.7)^n \times 1[/tex]

Replace 1 with 0.7/0.7

[tex]a_n = 3 (0.7)^n \times \frac{0.7}{0.7}[/tex]

Rewrite as:

[tex]a_n = 3 *0.7 \times \frac{(0.7)^n}{0.7}[/tex]

Apply law of indices

[tex]a_n = 3 \times 0.7 \times (0.7)^{n-1}[/tex]

[tex]a_n = 2.1 \times (0.7)^{n-1}[/tex]

The n term of a geometric progression is:

[tex]a_n = ar^{n-1}[/tex]

Compare [tex]a_n = ar^{n-1}[/tex] to [tex]a_n = 2.1 \times (0.7)^{n-1}[/tex]

[tex]a = 2.1[/tex] --- the first term

[tex]r = 0.7[/tex]

The sum of n terms of a geometric progression is:

[tex]S_n = \frac{a(1 - r^n)}{1 -r}[/tex]

This gives:

[tex]S_n = \frac{2.1(1 - 0.7^n)}{1 -0.7}[/tex]

[tex]S_n = \frac{2.1(1 - 0.7^n)}{0.3}[/tex]

[tex]S_n = 7(1 - 0.7^n)[/tex]

Learn more about the sum of geometric progression at:

https://brainly.com/question/22068689