Respuesta :

Answer:

The answer is 30+7i.

Step-by-step explanation:

Imaginary Number Definition

[tex]\large\boxed{{i=\sqrt{-1}}}[/tex]

Simply evaluate like how you evaluate polynomials. Expand the expression in.

[tex]\large{(8-3i)(3+2i)=[(8*3)+(8*2i)]+[(-3i*3)+(-3i*2i)]}\\\large{(8-3i)(3+2i)=(24+16i)+(-9i-6i^2)[/tex]

Therefore, our new expression when cancelling out the brackets is:

[tex]\large\boxed{24+16i-9i-6i^2}[/tex]

Imaginary Number Definition II

[tex]\large\boxed{i^2=-1}[/tex]

Therefore, substitute or change i² to -1

[tex]\large{24+16i-9i-6(-1)}\\\large{24+7i+6}\\\large{30+7i}[/tex]

Complex Number Definition

[tex]\large\boxed{a+bi}[/tex]

Where a = Real Part and bi = Imaginary Part.

Therefore, it's the best to arrange in the form of a+bi.

Hence, the answer is 30+7i.