Answer:
The answer is 30+7i.
Step-by-step explanation:
Imaginary Number Definition
[tex]\large\boxed{{i=\sqrt{-1}}}[/tex]
Simply evaluate like how you evaluate polynomials. Expand the expression in.
[tex]\large{(8-3i)(3+2i)=[(8*3)+(8*2i)]+[(-3i*3)+(-3i*2i)]}\\\large{(8-3i)(3+2i)=(24+16i)+(-9i-6i^2)[/tex]
Therefore, our new expression when cancelling out the brackets is:
[tex]\large\boxed{24+16i-9i-6i^2}[/tex]
Imaginary Number Definition II
[tex]\large\boxed{i^2=-1}[/tex]
Therefore, substitute or change i² to -1
[tex]\large{24+16i-9i-6(-1)}\\\large{24+7i+6}\\\large{30+7i}[/tex]
Complex Number Definition
[tex]\large\boxed{a+bi}[/tex]
Where a = Real Part and bi = Imaginary Part.
Therefore, it's the best to arrange in the form of a+bi.
Hence, the answer is 30+7i.