The area of a shape is the amount of space, the shape can occupy. The equation to calculate the value of x is: [tex](e)\ x^2 + 11x -42= 0[/tex]
The space on the border is given as:
[tex]Top = 2[/tex]
[tex]Others = 3[/tex]
So, the dimension of the sheet of paper is:
[tex]Length = x + 2 + 3[/tex]
[tex]Length = x + 5[/tex]
[tex]Width = x + 3 + 3[/tex]
[tex]Width = x + 6[/tex]
The area of the sheet is then calculated as follows:
[tex]Area= Length \times Width[/tex]
[tex]Area= (x + 5) \times (x + 6)[/tex]
Open brackets
[tex]Area= x^2 + 5x + 6x + 30[/tex]
[tex]Area= x^2 + 11x + 30[/tex]
From the question, we understand that the area of the sheet is [tex]72cm^2[/tex]
So, the equation becomes
[tex]x^2 + 11x + 30 = 72[/tex]
Subtract 72 from both sides
[tex]x^2 + 11x + 30 -72= 0[/tex]
[tex]x^2 + 11x -42= 0[/tex]
Hence,
[tex](e)\ x^2 + 11x -42= 0[/tex] can be used to calculate the value of x
Read more about areas at:
https://brainly.com/question/16418397