Respuesta :

I hope this helps you
Ver imagen Аноним

Answer:

The simplified form of  the given expression [tex]\dfrac{\frac{2}{5t}-\frac{3}{3t} }{\frac{1}{2t}+\frac{1}{2t}}=-\frac{3}{5}[/tex]

Step-by-step explanation:

Given expression  [tex]\dfrac{\frac{2}{5t}-\frac{3}{3t} }{\frac{1}{2t}+\frac{1}{2t}  }[/tex]

We have to simplify the given expression [tex]\dfrac{\frac{2}{5t}-\frac{3}{3t} }{\frac{1}{2t}+\frac{1}{2t}  }[/tex]

Consider the given expression [tex]\dfrac{\frac{2}{5t}-\frac{3}{3t} }{\frac{1}{2t}+\frac{1}{2t}  }[/tex]

Consider denominator [tex]\frac{1}{2t}+\frac{1}{2t}[/tex]

Apply rule, [tex]\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}[/tex]

[tex]=\frac{1+1}{2t}=\frac{1}{t}[/tex]

Now, apply fraction rule, [tex]\frac{a}{\frac{b}{c}}=\frac{a\cdot \:c}{b}[/tex]

We get,

[tex]=\frac{\left(\frac{2}{5t}-\frac{3}{3t}\right)t}{1}[/tex]

Simplify, we get,

[tex]\frac{t\left(\frac{2}{5t}-\frac{1}{t}\right)}{1}[/tex]

Simplify, we get,

[tex]\frac{t\left(\frac{2}{5t}-\frac{1}{t}\right)}{1}[/tex]

Further simplify by [tex]\frac{-a}{b}=-\frac{a}{b} \ and\  a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c}[/tex]

We get, [tex]=-\frac{3t}{5t}[/tex]

Thus,  [tex]-\frac{3}{5}[/tex]