The Gibson family have bought tickets to the Christmas Market. There are 4 mothers, 2 grand-mothers and 4 daughters. What is the minimum number of tickets they need?

Respuesta :

AL2006
The minimum number of tickets that could admit all of them is six (6).

This thing is impossible to explain in words, so I shall attempt it with a diagram:

Here are the six ladies:

       ( A )      ( B )
          |           |
          |           |
       ( C )      ( D )
          |           |
          |           |
       ( E )       ( F )  

--  'E'  and  'F'  are the daughters of  'C'  and  'D' .

--  'C'  and  'D'  are the daughters of  'A'  and  'B' .

So look what we have now:

--  'A'  and  'B'  are the mothers of  'C'  and  'D' .
     There's 2 of the mothers.

--  'C'  and  'D'  are the mothers of  'E'  and  'F' .
     There's the OTHER 2 mothers. 
 
--  'A'  and  'B'  are the grandmothers of  'E'  and  'F' .
    There's the 2 grandmothers.

--  'E'  and  'F'  are the daughters of  'C'  and  'D' .
     There's 2 of the daughters.

--  'C'  and  'D'  are the daughters of  'A'  and  'B' .
     There's the OTHER 2 daughters.

You want to know what ? !
The group is even bigger than THAT.
There are also 2 GRAND-daughters in the family ...  'E'  and  'F' .

So now you have a list of 12 people ! ... 4 mothers, 2 grandmothers,
4 daughters, and 2 grand-daughters ... and they all get in to the
Christmas Market with only six tickets.    Legally !

Such a deal !

Don't forget :  Christmas this year is also the first day of Chanukah !
                     All for the same price !