Respuesta :

Answer:

[tex]\sec \theta = \frac{\sqrt{22}}{4}[/tex]

Step-by-step explanation:

Given

[tex]\tan^2 \theta = \frac{3}{8}[/tex]

Required

[tex]\sec\ \theta[/tex]

We have:

[tex]\sec^2\theta = 1 + \tan^2 \theta[/tex]

This gives:

[tex]\sec^2\theta = 1 + \frac{3}{8}[/tex]

Take lcm and solve

[tex]\sec^2\theta = \frac{9+3}{8}[/tex]

[tex]\sec^2\theta = \frac{11}{8}[/tex]

Take square roots

[tex]\sec \theta = \frac{\sqrt{11}}{\sqrt 8}[/tex]

[tex]\sec \theta = \frac{\sqrt{11}}{2\sqrt 2}[/tex]

Rationalize

[tex]\sec \theta = \frac{\sqrt{11}}{2\sqrt 2} * \frac{\sqrt 2}{\sqrt 2}[/tex]

[tex]\sec \theta = \frac{\sqrt{22}}{4}[/tex]

Answer:

answer is B

Step-by-step explanation:

i got it right on edg