Given Tan A= 2/3 and that angle A is in quadrant 1, find the exact value of sec A in simplest radical form using a rational denominator.

Respuesta :

Answer:

[tex]\sec A =\frac{\sqrt{13}}{3}[/tex]

Step-by-step explanation:

Given

[tex]\tan A = 2/3[/tex]

Required

[tex]\sec\ A[/tex]

First, we have:

[tex]\tan A = \frac{x}{y}[/tex]

Where

[tex]x \to oppo site\\[/tex]

[tex]y \to adja cent[/tex]

[tex]z \to hypotenuse[/tex]

So:

[tex]\tan A = \frac{x}{y} =\frac{2}{3}[/tex]

By comparison:

[tex]x = 2; y =3[/tex]

Using Pythagoras, we have:

[tex]z^2 = x^2 +y^2[/tex]

[tex]z^2 = 2^2 +3^2[/tex]

[tex]z^2 = 13[/tex]

[tex]z = \sqrt{13[/tex]

[tex]\sec A =\frac{z}{y}[/tex]

[tex]\sec A =\frac{\sqrt{13}}{3}[/tex]