Find each product.
1. 2x(x^2-6x+3)
2. 2a^2(5b^2 + 3ab + 6a + 1)

Given:
The expressions are:
[tex]2x(x^2-6x+3)[/tex]
[tex]2a^2(5b^2+3ab+6a+1)[/tex]
To find:
The product of each expression.
Solution:
According to the distributive property of multiplication over addition, we get
[tex]a(b+c)=ab+ac[/tex]
The first expression is:
[tex]2x(x^2-6x+3)[/tex]
Using distributive property of multiplication over addition, we get
[tex]2x(x^2-6x+3)=(2x)(x^2)+(2x)(-6x)+(2x)(3)[/tex]
[tex]2x(x^2-6x+3)=2x^3-12x^2+6x[/tex]
Therefore, the product of [tex]2x(x^2-6x+3)[/tex] is [tex]2x^3-12x^2+6x[/tex].
The second expression is:
[tex]2a^2(5b^2+3ab+6a+1)[/tex]
Using distributive property of multiplication over addition, we get
[tex]2a^2(5b^2+3ab+6a+1)=(2a^2)(5b^2)+(2a^2)(3ab)+(2a^2)(6a)+(2a^2)(1)[/tex]
[tex]2a^2(5b^2+3ab+6a+1)=10a^2b^2+6a^3b+12a^3+2a^2[/tex]
Therefore, the product of [tex]2a^2(5b^2+3ab+6a+1)[/tex] is [tex]10a^2b^2+6a^3b+12a^3+2a^2[/tex].