Respuesta :
this may help you
First write and balance the equation, being: CaCO3 - CaO + CO2 Then, using the periodic table, find the molecular masses of CaCO3 and of CaO, finding their ratio. That will be 100g:56g or 0.1kg:0.056kg. Since you have 4.7kg of CaCO3, it corresponds to Xkg of CaO. Making x the subject, it should be X= 4.7*0.056/100=0,002632
Answer : The mass of calcium oxide produced is, 2632 g
Solution : Given,
Mass of calcium carbonate = 4.7 Kg = 4700 g (1 Kg = 1000 g)
Molar mass of calcium carbonate = 100 g/mole
Molar mass of calcium oxide = 56 g/mole
First we have to calculate the moles of calcium carbonate.
[tex]\text{Moles of }CaCO_3=\frac{\text{Mass of }CaCO_3}{\text{Molar mass of }CaCO_3}=\frac{4700g}{100g/mole}=47moles[/tex]
Now we have to calculate the moles of calcium oxide.
The balanced decomposition reaction will be,
[tex]CaCO_3\rightarrow CaO+CO_2[/tex]
From the balanced reaction we conclude that,
As, 1 mole of calcium carbonate decompose to give 1 mole of calcium oxide
So, 47 moles of calcium carbonate decompose to give 47 moles of calcium oxide
Now we have to calculate the mass of calcium oxide.
[tex]\text{Mass of }CaO=\text{Moles of }CaO\times \text{Molar mass of }CaO[/tex]
[tex]\text{Mass of }CaO=(47moles)\times (56g/mole)=2632g[/tex]
Therefore, the mass of calcium oxide produced is, 2632 g