A ladder 18 ft long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall and let x be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does x change with respect to θ when θ = π 3 ?

Respuesta :

Answer: [tex]9\ ft/rad[/tex]

Step-by-step explanation:

Given

Length of the ladder is [tex]l=18\ ft[/tex]

Angle between the wall and the ladder is [tex]\theta[/tex]

from the figure, we can write

[tex]\Rightarrow \sin \theta=\dfrac{x}{18}\\\\\Rightarrow x=18\sin \theta[/tex]

Differentiate the above equation w.r.t [tex]\theta[/tex]

[tex]\Rightarrow \dfrac{dx}{d\theta}=18\cos \theta\\\\\text{at }\theta=\dfrac{\pi }{3}\\\\\Rightarrow \dfrac{dx}{d\theta}=18\cos(\dfrac{\pi}{3})\\\\\Rightarrow \dfrac{dx}{d\theta}=18\times 0.5\\\\\Rightarrow \dfrac{dx}{d\theta}=9\ ft/rad[/tex]

Ver imagen nuuk