A spring, with a spring constant of 4000 N/m, is oriented horizontally, and compressed by 10cm. When released, the spring launches a block of mass 1.0 kg along a 5.0-m horizontal section of track, where the coefficient of friction between the block and track is 0.20. The block then goes up a frictionless ramp angled at 60o with the horizontal. How high up the ramp does the block go before it starts to slide back down

Respuesta :

Answer:

[tex]d=1.2m[/tex]

Explanation:

From the question we are told that:

Spring constant [tex]k= 4000 N/m[/tex]

Compressed [tex]l_d= 10cm=>0.10[/tex]

Mass [tex]m=1.0kg[/tex]

Length of horizontal section  [tex]l=5.0-m[/tex]

Coefficient of friction [tex]\mu=0.20[/tex]

Angle [tex]\theta=60 \textdegree[/tex]

Generally the equation for Kinetic Energy K.E is mathematically given by

 [tex]K.E=\mu mgL+mgdsin\theta[/tex]

 [tex]\frac{1}{2}k*l_d^2=\mu mgL+mgdsin\theta[/tex]

 [tex]\frac{1}{2}(4000)*0.1^2=0.2*1*9.8*5+1*9.8*d*sin60[/tex]

 [tex]d=1.2m[/tex]