A force of 50 pounds acts on an object at an angle of 45 degrees. A second force of 75 pounds acts on the object at an angle of -30 degrees. Find the direction and magnitude of the resultant force.

Respuesta :

Answer:

The magnitude of the resultant force is:

[tex]R=100.3 \:pound[/tex]

The direction is:

[tex]\theta=1.2^{\circ}[/tex]

Step-by-step explanation:

Let's find the components of each vector is x and y-directions first.

Sum of x-component vector forces.

[tex]F_{tot-x}=F_{1}cos(45)+F_{2}cos(30)[/tex]

[tex]F_{tot-x}=50cos(45)+75cos(30)[/tex]

[tex]F_{tot-x}=100.3 \: pound[/tex]

Sum of y-component vector forces.

[tex]F_{tot-y}=-F_{1}sin(45)+F_{2}sin(30)[/tex]

[tex]F_{tot-y}=-50sin(45)+75sin(30)[/tex]

[tex]F_{tot-y}=2.1 \: pound[/tex]  

The magnitude of the resultant force is:

[tex]R=\sqrt{100.3^{2}+2.1^{2}}[/tex]

[tex]R=100.3 \:pound[/tex]

The direction is:

[tex]tan(\theta)=\frac{2.1}{100.3}[/tex]

[tex]\theta=arctan(\frac{2.1}{100.3})[/tex]

[tex]\theta=1.2^{\circ}[/tex]

I hope it helps you!