Answer:
x = (2 + √3) , (2 - √3)
Step-by-step explanation:
GIVEN :-
- A quadratic polynomial x² - 4x + 1
TO FIND :-
- Roots of the quadratic polynomial
GENERAL FORMULAE TO BE USED IN THIS QUESTION :-
Quadratic formulae -
For a polynomial ax² + bx + c , its roots are :-
[tex]x = \frac{-b + \sqrt{b^2 - 4ac} }{2a} \; ; \frac{-b - \sqrt{b^2 - 4ac} }{2a}[/tex]
SOLUTION :-
Use the quadratic formulae to find the roots of the polynomial.
[tex]=> x = \frac{-(-4) + \sqrt{(-4)^2 - 4 \times 1 \times 1c} }{2 \times 1} \; ; \frac{-(-4) - \sqrt{(-4)^2 - 4 \times 1 \times 1} }{2 \times 1}[/tex]
[tex]= \frac{4 + \sqrt{16 - 4} }{2} \; ; \frac{4- \sqrt{16 - 4}}{2}[/tex]
[tex]= \frac{4 + \sqrt{12} }{2} \; ; \frac{4- \sqrt{12}}{2}[/tex]
[tex]= \frac{4 + 2\sqrt{3} }{2} \; ; \frac{4- 2\sqrt{3}}{2}[/tex]
[tex]= \frac{2(2 + \sqrt{3})}{2} \; ; \frac{2(2- \sqrt{3})}{2}[/tex]
[tex]= (2 + \sqrt{3} ) \; ; (2 - \sqrt{3} )[/tex]