What are the roots of the polynomial x2 - 4x + 1 ?
Work out your answer on our whiteboard. Then, click the buttons below to
see the step-by-step solution.

What are the roots of the polynomial x2 4x 1 Work out your answer on our whiteboard Then click the buttons below to see the stepbystep solution class=

Respuesta :

Answer:

x = (2 + √3) , (2 - √3)

Step-by-step explanation:

GIVEN :-

  • A quadratic polynomial x² - 4x + 1

TO FIND :-

  • Roots of the quadratic polynomial

GENERAL FORMULAE TO BE USED IN THIS QUESTION :-

Quadratic formulae -

For a polynomial ax² + bx + c , its roots are :-

[tex]x = \frac{-b + \sqrt{b^2 - 4ac} }{2a} \; ; \frac{-b - \sqrt{b^2 - 4ac} }{2a}[/tex]

SOLUTION :-

Use the quadratic formulae to find the roots of the polynomial.

[tex]=> x = \frac{-(-4) + \sqrt{(-4)^2 - 4 \times 1 \times 1c} }{2 \times 1} \; ; \frac{-(-4) - \sqrt{(-4)^2 - 4 \times 1 \times 1} }{2 \times 1}[/tex]

         [tex]= \frac{4 + \sqrt{16 - 4} }{2} \; ; \frac{4- \sqrt{16 - 4}}{2}[/tex]

         [tex]= \frac{4 + \sqrt{12} }{2} \; ; \frac{4- \sqrt{12}}{2}[/tex]

         [tex]= \frac{4 + 2\sqrt{3} }{2} \; ; \frac{4- 2\sqrt{3}}{2}[/tex]

         [tex]= \frac{2(2 + \sqrt{3})}{2} \; ; \frac{2(2- \sqrt{3})}{2}[/tex]

         [tex]= (2 + \sqrt{3} ) \; ; (2 - \sqrt{3} )[/tex]