Respuesta :

Answer:

[tex]C'(t) = \frac{t-3.95}{0.95}[/tex]

Step-by-step explanation:

Given

[tex]C=0.95t+3.95[/tex]

Required

The inverse function

[tex]C=0.95t+3.95[/tex]

Swap C and t

[tex]t=0.95C+3.95[/tex]

Make C the subject

[tex]0.95C = t - 3.95[/tex]

Divide by 0.95

[tex]C = \frac{t}{0.95} - \frac{3.95}{0.95}[/tex]

Hence, the inverse function is:

[tex]C'(t) = \frac{t}{0.95} - \frac{3.95}{0.95}[/tex]

or

[tex]C'(t) = \frac{t-3.95}{0.95}[/tex]