Respuesta :
Answer:
27
Step-by-step explanation:
[tex]\bigg(3^6\bigg)^{\frac{1}{2}}[/tex]
use
[tex](a^n)^m=a^{n\cdot m}[/tex]
[tex]\bigg(3^6\bigg)^{\frac{1}{2}}=3^{6\cdot\frac{1}{2}[/tex]
simplify
[tex]6\!\!\!\!\diagup^3\cdot\dfrac{1}{2\!\!\!\!\diagup_1}=3\cdot\dfrac{1}{1}=3\cdot1=3[/tex]
other
[tex]6\cdot\dfrac{1}{2}=\dfrac{6\cdot1}{2}=\dfrac{6}{2}=3[/tex]
therefore
[tex]\bigg(3^6\bigg)^{\frac{1}{2}}=3^{6\cdot\frac{1}{2}}=3^3=\underbrace{3\cdot3\cdot3}_{3}=27[/tex]
[tex]\displaystyle\bf \boldsymbol{\boxed{(a^n)^m=a^{n\cdot m}}} \\\\(3^6)^{\frac{1}{2}} =3^{\frac{6}{2} }=3^3=\boldsymbol{{\boxed {27}}}[/tex]