Given:
Consider the given function is:
[tex]f(x)=5^x+1[/tex]
To find:
The average rate of change between x = 0 and x = 4.
Solution:
The average rate of change of a function f(x) over the interval [a,b] is:
[tex]m=\dfrac{f(b)-f(a)}{b-a}[/tex]
We have,
[tex]f(x)=5^x+1[/tex]
At [tex]x=0[/tex],
[tex]f(0)=5^0+1[/tex]
[tex]f(0)=1+1[/tex]
[tex]f(0)=2[/tex]
At [tex]x=0[/tex],
[tex]f(4)=5^4+1[/tex]
[tex]f(4)=625+1[/tex]
[tex]f(4)=626[/tex]
Now, the average rate of change between x = 0 and x = 4 is:
[tex]m=\dfrac{f(4)-f(0)}{4-0}[/tex]
[tex]m=\dfrac{626-2}{4}[/tex]
[tex]m=\dfrac{624}{4}[/tex]
[tex]m=156[/tex]
Hence, the average rate of change between x = 0 and x = 4 is 156.