Respuesta :

Answer:

[tex]x = 3[/tex]

Step-by-step explanation:

Given

[tex]\log6^{(4x-5)} =\log6^{(2x+1)}[/tex]

Required

Solve for x

We have:

[tex]\log6^{(4x-5)} =\log6^{(2x+1)}[/tex]

Remove log6 from both sides

[tex](4x-5) = (2x+1)[/tex]

Collect like terms

[tex]4x - 2x = 5 + 1[/tex]

[tex]2x = 6[/tex]

Divide by 2

[tex]x = 3[/tex]