Respuesta :

Answer:  Choice C

[tex]\frac{2x+3}{x+2}[/tex]

===============================================

Work Shown:

[tex]h(x) = f(x) \div g(x)\\\\h(x) = \frac{f(x)}{g(x)}\\\\h(x) = \frac{2x^2-x-6}{x^2-4}\\\\h(x) = \frac{(x-2)(2x+3)}{(x-2)(x+2)}\\\\h(x) = \frac{2x+3}{x+2}\\\\[/tex]

Optional Extra Info:

Keep in mind that [tex]x \ne 2[/tex] and [tex]x \ne -2[/tex] to avoid division by zero errors. We can plug in x = 2 just fine into the simplified version of h(x), but we always need to go back to the original.