The width of a rectangle is three units less than the length if the area is 28 square units then find the dimensions of the rectangle

Respuesta :

Let

  • width be x
  • Length=x+3

ATQ

[tex]\\ \sf \longmapsto Area=Length\times Width[/tex]

[tex]\\ \sf \longmapsto x(x+3)=28[/tex]

[tex]\\ \sf \longmapsto x^2+3x=28[/tex]

[tex]\\ \sf \longmapsto x^2+3x-28=0[/tex]

[tex]\\ \sf \longmapsto x^2+7x-4x-28=0[/tex]

[tex]\\ \sf \longmapsto x(x+7)-4(x+7)=0[/tex]

[tex]\\ \sf \longmapsto (x-4)(x+7)=0[/tex]

[tex]\\ \sf \longmapsto x=4\:or\:x=-7[/tex]

  • Ignore negative value

[tex]\\ \sf \longmapsto Width=4units[/tex]

[tex]\\ \sf \longmapsto Length=4+3=7units[/tex]

Otras preguntas