1.Find x,y and z in the figure. 2. find the x and y in the figure

[tex]\\ \sf\longmapsto x+2x+90=180[/tex]
[tex]\\ \sf\longmapsto 3x+90=180[/tex]
[tex]\\ \sf\longmapsto 3x=180-90[/tex]
[tex]\\ \sf\longmapsto 3x=90[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{90}{3}[/tex]
[tex]\\ \sf\longmapsto x=30[/tex]
Now
[tex]\\ \sf\longmapsto x=2y[/tex](Opposite interior angles)
[tex]\\ \sf\longmapsto 2y=30[/tex]
[tex]\\ \sf\longmapsto y=\dfrac{30}{2}[/tex]
[tex]\\ \sf\longmapsto y=15[/tex]
And
[tex]\\ \sf\longmapsto x+z=180[/tex]
[tex]\\ \sf\longmapsto z+30=180[/tex]
[tex]\\ \sf\longmapsto z=180-30[/tex]
[tex]\\ \sf\longmapsto z=150[/tex]
Answer:
Straight angle is 180°:
Alternate interior angles are congruent:
Consecutive interior angles are supplementary:
Alternate interior angles:
Sum of interior angles of a triangle: