-20t^5u^2v^3
———————-
48t^7u^4v

Answer:
B. [tex]\frac{-5v^2}{12t^2u^2}\\[/tex]
Step-by-step explanation:
Recall:
[tex]\frac{a^x}{a^y} = a^{x -y}\\[/tex]
[tex]a^{-x} = \frac{1}{a^x}\\[/tex]
Solution:
[tex]\frac{-20t^5u^2v^3}{48t^7u^4v} \\ \frac{-20}{48} \cdot t^{5 -7} u^{2 -4} v^{3 -1} \\ -\frac{5}{12} \cdot t^{-2} u^{-2} v^2 \\ -\frac{5v^2}{12t^2u^2}[/tex]