2
2
The sum of the first 20 terms of an arithmetic progression is 405 and the sum of the first 40 terms
is 1410.
Find the 60th term of the progression.

Respuesta :

Answer:

94.5

Step-by-step explanation:

sₙ = n/2 * (2a₁ + (n-1)d) ... Sₙ: sum of first n term   d: common difference

sum of the first 20 terms: 20/2 * (2a₁ + (20-1)d) = 10* (2a₁+19d) = 405

2a₁+19d = 40.5   ... (1)

sum of the first 40 terms: 40/2 * (2a₁ + (40-1)d) = 20* (2a₁+39d) =1410

2a₁+39d = 70.5    ... (2)

(2)-(1): 20d = 30

d = 1.5              

a₁ = 1/2 (40.5 - 19*1.5) = 6

aₙ = a₁ + (n-1)d

60th term: a₆₀ = 6 + (60-1)*1.5 = 94.5

                                                                             

The  60th term of the given progression is  94.5

What is the general form of arithmetic progression?

[tex]a_n = a_1+ (n-1)d[/tex]

[tex]s_n = n/2 * (2a_1 + (n-1)d) ... S_n[/tex]sum of first n term

 d: common difference

We have to find sum of the first 20 terms therefore use n=20

[tex]20/2 * (2a_1 + (20-1)d) = 10* (2a_1+19d) = 405[/tex]

[tex]2a_1+19d = 40.5[/tex] ... (1)

sum of the first 40 terms:

[tex]40/2 * (2a_1 + (40-1)d) = 20* (2a_1+39d) =1410[/tex]

[tex]2a_1+39d = 70.5[/tex] ... (2)

(2)-(1):

20 d = 30

divide both side by 20 and isolate d

d = 1.5              

[tex]a_1= 1/2 (40.5 - 19\times1.5) = 6[/tex]

[tex]a_n = a_1+ (n-1)d[/tex]

for the 60th term use n=60

[tex]a_{60}= 6 + (60-1)\times1.5 = 94.5[/tex]

Therefore we get the 60th term of the given progression is 94.5

To learn more about the arithmetic progression visit:

https://brainly.com/question/18828482