4. Verify the following for a = 3 abd b = 4.
a). (a+b)² = a²+2ab+b²
b). (a-b)² = a²-2ab+b²
c). (a+b)(a-b) = a²-b²

Solve this all please..​

Respuesta :

Answer:

Solution :

Verify the following for a = 3 and b = 4.

★ a) (a + b)² = a² + 2ab + b²

Here

  • ↝ a = 3
  • ↝ b = 4

Now :-

[tex]\longrightarrow\small\sf{(a + b)}^{2} = {a}^{2} + 2ab + {b}^{2} [/tex]

[tex]\longrightarrow\small\sf{(3 + 4)}^{2} = {3}^{2} + 2 \times 3 \times 4 + {4}^{2} [/tex]

[tex]{\longrightarrow{\small{\sf{(7)}^{2} = {(3 \times 3)} + 6 \times 4 + {(4 \times 4)}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{(7 \times 7)} = 9 + 24 + 16}}}[/tex]

[tex]{\longrightarrow{\small{\sf{49 = 49}}}}[/tex]

[tex]\longrightarrow{\small{\sf{\underline{\underline{LHS = RHS}}}}}[/tex]

Hence Verified!

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

★ b) (a - b)² = a² - 2ab + b²

Here :-

  • ↝ a = 3
  • ↝ b = 4

Now :-

[tex]\longrightarrow\small\sf{(a - b)}^{2} = {a}^{2} - 2ab + {b}^{2} [/tex]

[tex]\longrightarrow\small\sf{(3 - 4)}^{2} = {3}^{2} - 2 \times 3 \times 4 + {4}^{2} [/tex]

[tex]\longrightarrow\small\sf{( - 1)}^{2} = {(3 \times 3)} - 6\times 4 + {(4 \times 4)} [/tex]

[tex]{\longrightarrow{\small{\sf{( - 1 \times - 1)} = 9- 24+ 16}}}[/tex]

[tex]{\longrightarrow{\small{\sf{1} = 25- 24}}}[/tex]

[tex]{\longrightarrow{\small{\sf{1 = 1}}}}[/tex]

[tex]\longrightarrow{\small{\sf{\underline{\underline{LHS = RHS}}}}}[/tex]

Hence Verified!

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

★ c) (a + b)(a - b) = a² - b²

Here :-

  • ↝ a = 3
  • ↝ b = 4

[tex]\longrightarrow\small\sf{(a + b)(a - b)= {a}^{2} - {b}^{2} }[/tex]

[tex]\longrightarrow\small\sf{(3 + 4)(3- 4)= {3}^{2} - {4}^{2} }[/tex]

[tex]\longrightarrow\small\sf{(7)( - 1)= (3 \times 3) - (4 \times 4) }[/tex]

[tex]\longrightarrow\small\sf{7 \times - 1= 9 - 16 }[/tex]

[tex]\longrightarrow\small\sf{-7= - 7}[/tex]

[tex]\longrightarrow{\small{\sf{\underline{\underline{LHS = RHS}}}}}[/tex]

Hence Verified!