Respuesta :

m<FOD = 90 -12 -15

m<FOD = 63

answer is B. 63

hope it helps

Answer:

Option B is correct,

The value of [tex]\angle FOD[/tex] is [tex]63^{\circ}[/tex]

Explanation:

From the given figure;

[tex]\angle COB =90^{\circ}[/tex] , [tex]\angle BOG =15^{\circ}[/tex], and [tex]\angle GOF=12^{\circ}[/tex].

Linear pair is a pair of adjacent angles formed when two lines intersect. i.e,

[tex]\angle COB[/tex] and [tex]\angle BOD[/tex] are linear pairs.

Also, the two angles of linear pair are always supplementary angle[ measure of a straight angle is 180 degrees].

[tex]\angle COB+\angle BOD=180^{\circ}[/tex]

we can write [tex]\angle BOD[/tex] as

[tex]\angle BOD = \angle BOG+\angle GOF+\angle FOD[/tex]

then;

[tex]\angle COB+\angle BOG+\angle GOF+\angle FOD=180^{\circ}[/tex]

Substitute the given values above to solve for angle FOD;

[tex]90^{\circ}+15^{\circ}+12^{\circ}+\angle FOD=180^{\circ}[/tex]

or

[tex]117^{\circ}+\angle FOD=180^{\circ}[/tex]

Simplify:

[tex]\angle FOD =180-117=63^{\circ}[/tex]

Therefore, the value of [tex]\angle FOD=63^{\circ}[/tex]