Answer:
[tex]\frac{d\theta}{dt}=-\frac{2}{5}[/tex] at [tex]x=12[/tex]
Step-by-step explanation:
[tex]\frac{dx}{dt}=2[/tex]
[tex]\frac{d\theta}{dt}=?[/tex]
[tex]x=12[/tex]
[tex]cos(\theta)=\frac{adjacent}{hypotenuse}[/tex]
[tex]cos(\theta)=\frac{x}{13}[/tex]
[tex]\frac{d}{dt}cos(\theta)=\frac{d}{dt}\frac{x}{13}[/tex]
[tex]-sin(\theta)\frac{d\theta}{dt}=\frac{1}{13}\frac{dx}{dt}[/tex]
[tex]-sin(\theta)\frac{d\theta}{dt}=\frac{1}{13}(2)[/tex]
[tex]-sin(\theta)\frac{d\theta}{dt}=\frac{2}{13}[/tex]
[tex]\frac{d\theta}{dt}=\frac{2}{-13sin(\theta)}[/tex]
[tex]cos(\theta)=\frac{x}{13}[/tex]
[tex]cos(\theta)=\frac{12}{13}[/tex]
[tex]\theta=cos^{-1}(\frac{12}{13})[/tex]
[tex]\frac{d\theta}{dt}=\frac{2}{-13sin(\theta)}[/tex]
[tex]\frac{d\theta}{dt}=\frac{2}{-13sin(cos^{-1}(\frac{12}{13}))}[/tex]
[tex]\frac{d\theta}{dt}=\frac{2}{-13(\frac{5}{13})}[/tex]
[tex]\frac{d\theta}{dt}=\frac{2}{-5}[/tex]
[tex]\frac{d\theta}{dt}=-\frac{2}{5}[/tex]