Respuesta :

Answer:

D. [tex]x<-6\mbox{ or } x>2[/tex]

Step-by-step explanation:

[tex]|x+2|-1>3[/tex]

First, add 1 to both sides:

[tex]|x+2|>4[/tex]

Now, you can split this into 2 equations. The value of the absolute value statement will be the same whether the statement inside is positive or negative. Example:

[tex]|2|=2\\|-2|=2[/tex]

Because of that, the [tex]x+2[/tex] could be positive or negative and still be true.

[tex]x+2>4\\-(x+2)>4[/tex]

Then, you can solve both of these inequalities. Top one here:

[tex]x+2>4\\x>2[/tex]

Bottom one:

[tex]-(x+2)>4[/tex]

Divide both sides by a -1 here, but be sure to invert the inequality sign:

[tex]x+2<-4\\x<-6[/tex]

The solutions are:

D. [tex]x<-6\mbox{ or } x>2[/tex]