Respuesta :

1244.57 cm²

Step-by-step explanation:

Given:

  • Slant height (l) is 21m
  • Diameter (d) is 24m

Hence, radius will be :

➝ diameter/2

➝ 24/2

12m

[tex] \: [/tex]

To Find:

  • Total Surface Area (TSA) of the cone.

Solution:

As, we know:

[tex] \star \quad{ \underline{ \green{ \boxed{TSA_{(cone)} = \pi r( l+r ) }}}} \quad\star \quad[/tex]

Here,

  • π = 22/7
  • r = 12m
  • l = 21m

[tex] \rightarrow \: \frac{22}{7} \times 12 \: (21 + 12)[/tex]

[tex] \rightarrow \: \frac{22}{7} \times 12 \: (33)[/tex]

[tex]\rightarrow \: \frac{8712}{7} {cm}^{2} [/tex]

Therefore, Total Surface Area of Cone is 8712/7 cm² or 1244.57cm².

_____________________

Additional Information:

[tex]\footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} = \dfrac{4}{3}\pi {r}^{3} }\\ \\ \bigstar \: \bf{Volume_{(cube)} = {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}[/tex]