Respuesta :
Answer:
y = (-5/2)X + 4
Step-by-step explanation:
we know that the equation of a line is y = mx + b
m = -5/2
so
y = -5/2x + b
to find b:
-6 = -10 + b
b = 4
so
y = (-5/2)X + 4
Answer:
Use the point-slope form of a linear equation:
[tex]y-y_1=m(x-x_1)[/tex]
where:
- [tex]m[/tex] = slope
- [tex](x_1,y_1)[/tex] = point on line
Given:
- [tex]m=-\dfrac52[/tex]
- [tex](x_1,y_1)=(4,-6)[/tex]
Substitute given information into the equation:
[tex]\implies y-y_1=m(x-x_1)[/tex]
[tex]\implies y-(-6)=-\dfrac52(x-4)[/tex]
[tex]\implies y+6=-\dfrac52x+10[/tex]
[tex]\implies y=-\dfrac52x+4[/tex]
Therefore, the equation of the line in different formats is:
[tex]\textsf{slope-intercept form: }y=-\dfrac52x+4[/tex]
[tex]\textsf{standard form: }5x+2y=8[/tex]