Respuesta :

Answer:

i can only help for the second question

Ver imagen syazain04t

Sum of the sequence is -22407

What is arithmetic sequence ?

An arithmetic sequence is a sequence where the common difference between two consecutive terms are always same.

If a be the first term and d be the common difference of a arithmetic sequence, then n th term of it = [tex]a_{n}[/tex] = a+(n-1)d

Sum of n terms = [tex]S_{n}[/tex] = [tex]\frac{n}{2}[/tex](2a+(n-1)d)

How to solve the given sum ?

GIven sequence is 9+4+(-1)+.......+(-471)

First we arrange the sequence in right sequence.

(-471)+................(-1)+4+9

Now, we have to find the value n,

Here a = -471

So, nth term 9, common difference = 5

So,  [tex]a_{n}[/tex] = [tex]a\\[/tex]+(n-1)d

   ⇒  [tex]a_{n}[/tex]-[tex]a[/tex]=(n-1)5

   ⇒ 9+(-471)=5(n-1)

   ⇒ 480=5n-5

   ⇒  5n = 485

   ⇒  n = 97

So, sum of terms =  [tex]S_{n}[/tex] = [tex]\frac{n}{2}[/tex](2a+(n-1)d)

                                     =  [tex]\frac{97}{2}[/tex](-942+(96×5))

                                     =  [tex]\frac{97}{2}[/tex](-942+480)

                                     =  [tex]\frac{97}{2}[/tex]×(-462)

                                     = -22407

Hence, The sum is -22407.

Learn more about arithmetic sequence here :

https://brainly.com/question/27592846

#SPJ2