Respuesta :

[tex]\dfrac{\log_5 9}{ \log_5 25}\\\\\\=\dfrac{1}{\log_5 25} \log_5 9\\\\\\=\dfrac{1}{ \log_5 5^2} \log_5 9\\\\\\=\dfrac{1}{2 \log_5 5} \log_5 9~~~~~~~~~;[\log_a m^n =n \log_a m]\\ \\\\=\dfrac 1{2} \log_5 9~~~~~~~~~~~~~~~~;[ \log_a a = 1][/tex]

Answer:

Yes.

Step-by-step explanation:

[tex]\sf \dfrac{log_5 \ 9}{log_5 \ 25}=\dfrac{log_5 \ 9}{log_5 \ 5^2}[/tex]

          [tex]\boxed{log \ a^m=m*log \ a}[/tex]

             [tex]\sf =\dfrac{log_5 \ 9}{2*log_5 \ 5}\\\\ \boxed{Log_a \ a = 1}\\ = \dfrac{log_5 \ 9 }{2*1}\\\\=\dfrac{1}{2}log_5 \ 9[/tex]