msm555
contestada

1. Express [tex]\frac{1}{x(2x+3) }[/tex] Is partial factions.
2. The variables x and y satisfy the differential equation.
x(2x + 3) [tex]\frac{dy}{dx }[/tex] = y and it is given that y = 1 when x = 1.
a.
find the particular solution of above differential equation, express y in term of x.
b.
Calculate the value of y when x = 9. given your answer in two decimal places.

Respuesta :

1. Let a and b be coefficients such that

[tex]\dfrac1{x(2x+3)} = \dfrac ax + \dfrac b{2x+3}[/tex]

Combining the fractions on the right gives

[tex]\dfrac1{x(2x+3)} = \dfrac{a(2x+3) + bx}{x(2x+3)}[/tex]

[tex]\implies 1 = (2a+b)x + 3a[/tex]

[tex]\implies \begin{cases}3a=1 \\ 2a+b=0\end{cases} \implies a=\dfrac13, b = -\dfrac23[/tex]

so that

[tex]\dfrac1{x(2x+3)} = \boxed{\dfrac13 \left(\dfrac1x - \dfrac2{2x+3}\right)}[/tex]

2. a. The given ODE is separable as

[tex]x(2x+3) \dfrac{dy}dx} = y \implies \dfrac{dy}y = \dfrac{dx}{x(2x+3)}[/tex]

Using the result of part (1), integrating both sides gives

[tex]\ln|y| = \dfrac13 \left(\ln|x| - \ln|2x+3|\right) + C[/tex]

Given that y = 1 when x = 1, we find

[tex]\ln|1| = \dfrac13 \left(\ln|1| - \ln|5|\right) + C \implies C = \dfrac13\ln(5)[/tex]

so the particular solution to the ODE is

[tex]\ln|y| = \dfrac13 \left(\ln|x| - \ln|2x+3|\right) + \dfrac13\ln(5)[/tex]

We can solve this explicitly for y :

[tex]\ln|y| = \dfrac13 \left(\ln|x| - \ln|2x+3| + \ln(5)\right)[/tex]

[tex]\ln|y| = \dfrac13 \ln\left|\dfrac{5x}{2x+3}\right|[/tex]

[tex]\ln|y| = \ln\left|\sqrt[3]{\dfrac{5x}{2x+3}}\right|[/tex]

[tex]\boxed{y = \sqrt[3]{\dfrac{5x}{2x+3}}}[/tex]

2. b. When x = 9, we get

[tex]y = \sqrt[3]{\dfrac{45}{21}} = \sqrt[3]{\dfrac{15}7} \approx \boxed{1.29}[/tex]