Respuesta :

Answer:

D. {-3, and -2.5}

Step-by-step explanation:

Using the quadratic equation, you can find the solution to 2x2+15=-11x.

[tex]\sf{2x^2+15=-11x}[/tex]

First, you have to add by 11x from both sides.

[tex]\Longrightarrow: \sf{2x^2+15+11x=-11x+11x}[/tex]

Solve.

2x²+11x+15=0

Use the quadratic formula.

Quadratic formula:

[tex]\Longrightarrow: \sf{AX^2+BX+C=0}\\\\\\\Longrightarrow: \sf{x_{1,\:2}=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}}[/tex]

  • A=2
  • B=11
  • C=15

[tex]\sf{x_{1,\:2}=\dfrac{-11\pm \sqrt{11^2-4\cdot \:2\cdot \:15}}{2\cdot \:2}}[/tex]

Solve.

Use the order of operations.

PEMDAS

  • Parentheses
  • Exponents
  • Multiply
  • Divide
  • Add
  • Subtract

[tex]\sf{\sqrt{11^2-4\cdot \:2\cdot \:15}}[/tex]

Multiply the numbers from left to right.

4*2*15=120

[tex]:\Longrightarrow\sf{\sqrt{11^2-120}[/tex]

Do exponents.

11²=11*11=121

[tex]\Longrightarrow: \sf{\sqrt{121-120}[/tex]

Subtract the numbers from left to right.

121-120=1

[tex]\sf{\sqrt{1}}=1[/tex]

[tex]\sf{x_{1,\:2}=\dfrac{-11\pm \:1}{2\cdot \:2}}[/tex]

[tex]\Longrightarrow: \sf{x_1=\dfrac{-11+1}{2\cdot \:2},\:x_2=\dfrac{-11-1}{2\cdot \:2}}[/tex]

Solve.

[tex]\sf{\dfrac{-11+1}{2\cdot \:2}}=\dfrac{-10}{2*2}=\dfrac{-10}{4}=-\dfrac{10}{4}[/tex]

[tex]\sf{\dfrac{-10\div2}{4\div2}=\dfrac{-5}{2}=-\dfrac{5}{2} }[/tex]

Divide is another options.

-5/2=-2.5

[tex]\sf{\dfrac{-11-1}{2\cdot \:2}}[/tex]

Solve.

[tex]\Longrightarrow: \sf{\dfrac{-11-1}{2\cdot \:2}}=\dfrac{-12}{2*2}=\dfrac{-12\div4}{4\div4}=\dfrac{-3}{1}=-3[/tex]

Solutions:

[tex]\Longrightarrow: \boxed{\sf{-3, \ -2.5}}[/tex]

  • Therefore, the correct answer is "D. {-3, -2.5}".

I hope this helps. Let me know if you have any questions.