Respuesta :

From the section formula, it was found that the coordinate for the point S is (12,21).

Section Formula

The coordinates of the point S which divides the line AB into two sections can be found from the application of the Section Formula that is presented below:

[tex]S=(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n})[/tex], where

[tex]ratio=\frac{m}{n}[/tex]

[tex]x_1[/tex] and [tex]y_1[/tex] are coordinates of A

[tex]x_2[/tex] and [tex]y_2[/tex] are coordinates of  B

  • Find the point S

The question gives  r=[tex]\frac{3}{2}[/tex], A=(21,3) and B=(6,33). From the ratio, you can find m=3 and n=2.

Next step, applying the internal section formula. Then, you have:

[tex]S=(\frac{3*6+2*21}{3+2}, \frac{3*33+2*3}{3+2})\\ \\ S=(\frac{18+42}{5}, \frac{99+6}{5})\\ \\ S=(\frac{60}{5}, \frac{105}{5})\\ \\ S=(12, 21)[/tex]

Read more about the section formula here:

https://brainly.com/question/14812336

#SPJ1