what's the answer to this

Answer:
AC ≈ 17.3 , BC ≈ 5.3
Step-by-step explanation:
using the tangent ratio in right triangle ACD
tan51° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{AC}{AD}[/tex] = [tex]\frac{AC}{14}[/tex] ( multiply both sides by 14 )
14 × tan51° = AC , then
AC ≈ 17.3 ( to the nearest tenth )
using the cosine ratio in right triangle ABC
cos72° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{BC}{AC}[/tex] = [tex]\frac{BC}{17.3}[/tex] ( multiply both sides by 17.3 )
17.3 × cos72° = BC , then
BC ≈ 5.3 ( to the nearest tenth )