Respuesta :

Answer:

AC ≈ 17.3 , BC ≈ 5.3

Step-by-step explanation:

using the tangent ratio in right triangle ACD

tan51° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{AC}{AD}[/tex] = [tex]\frac{AC}{14}[/tex] ( multiply both sides by 14 )

14 × tan51° = AC , then

AC ≈ 17.3 ( to the nearest tenth )

using the cosine ratio in right triangle ABC

cos72° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{BC}{AC}[/tex] = [tex]\frac{BC}{17.3}[/tex] ( multiply both sides by 17.3 )

17.3 × cos72° = BC , then

BC ≈ 5.3 ( to the nearest tenth )