Respuesta :
Answer:
[tex] \boxed{\rm \: Slope(m)= \cfrac{4}{ 3} }[/tex]
OR
[tex] \boxed{\rm \: Slope(m) \approx \: 1.30} \rm \: (nearest \: tenth)[/tex]
Step-by-step explanation:
Given two coordinates:
- (-4, -1) and (-1, 3)
To Find:
- The slope of given two coordinates
Solution:
In this case,we'll need to use the slope's formula,to get the slope.
Here's the formula:
[tex] \rm \: Slope(m)= \: \cfrac{ y_2 -y_1 }{x_2 - x_1} [/tex]
- Slope is usually denoted as m.
According to the question:
- [tex] \rm (y_2 , y _1) = (3,-1)[/tex]
- [tex]\rm (x_2 , x_1) = (-1,-4)[/tex]
Substitute them accordingly:
[tex] \rm \: Slope(m)= \cfrac{3 - ( - 1)}{ - 1 - ( - 4)} [/tex]
Simplify then, using a rule called PEMDAS.
[tex] \rm \: Slope(m)= \cfrac{3 + 1}{ - 1 +4 } [/tex]
[tex] \rm \: Slope(m)= \cfrac{4}{ 3} [/tex]
[tex] \rm \: Slope(m) \approx \: 1.30[/tex]
Hence, we can conclude that:
- The slope of a line parallel to the line that passes through (-4, -1) and (-1, 3) is 4/3 in exact form and 1.30 in approximate decimal form.

Hi student, let me help you out! :)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We are asked to find the slope of a line parallel to the line that passes through
[tex]\star~\mathrm{(-4,-1)}\star[/tex]
[tex]\star~\mathrm{(-1,3)}[/tex]
[tex]\triangle~\fbox{\bf{KEY:}}[/tex]
- The slope formula will help us out! :)
Here's the formula:
[tex]\star\boxed{\mathrm{\cfrac{y2-y1}{x2-x1}}}[/tex]
y2 and y1 are y-coordinates
x2 and x1 are x-coordinates
Substitute the given values:
[tex]\star\mathrm{\cfrac{3-(-1)}{-1-(-4)}}[/tex]
Simplify!
[tex]\star\mathrm{\cfrac{3+1}{-1+4}}[/tex]
Simplify more!
[tex]\star\mathrm{\cfrac{4}{3}}[/tex]
Now, what is the slope of the line parallel to this one?
Well, parallel lines have the same slope.
[tex]\star \ \mathrm{The \ slope \ of \ the \ line \ parallel \ to \ this \ one \ is \ \cfrac{4}{3}}.[/tex]
Hope it helps you out! :D
Ask in comments if any queries arise.
#StudyWithBrainly
~Just a smiley person helping fellow students :)