100 PTS PLEASE ANSWER ASAP! <3

[tex]\\ \rm\Rrightarrow g(x)=6(\dfrac{3}{2})^x[/tex]
[tex]\\ \rm\Rrightarrow g(-1)=6(\dfrac{3}{2})^{-1}=6(\dfrac{2}{3})=2(2)=4[/tex]
[tex]\\ \rm\Rrightarrow g(0)=6[/tex]
[tex]\\ \rm\Rrightarrow g(1)=6(\dfrac{3}{2})=3(3)=9[/tex]
[tex]\\ \rm\Rrightarrow g(2)=6\times\dfrac{9}{4}=13.2[/tex]
Attached the graph
Answer:
Given function:
[tex]g(x)=6\left(\dfrac{3}{2}\right)^x[/tex]
To find each of the points, substitute the given values of x into the function:
[tex]x=-1 \implies g(-1)=6\left(\dfrac{3}{2}\right)^{-1}=4[/tex]
[tex]x=0 \implies g(0)=6\left(\dfrac{3}{2}\right)^{0}=6[/tex]
[tex]x=1 \implies g(1)=6\left(\dfrac{3}{2}\right)^{1}=9[/tex]
[tex]x=2 \implies g(2)=6\left(\dfrac{3}{2}\right)^{2}=13.5[/tex]
Therefore:
[tex]\large \begin{array}{| c | c | c | c | c |}\cline{1-5} x & -1 & 0 & 1 & 2 \\\cline{1-5} g(x) & 4 & 6 & 9 & 13.5 \\\cline{1-5} \end{array}[/tex]
As the function is exponential, there is a horizontal asymptote at [tex]y=0[/tex].
Therefore, as [tex]x[/tex] approaches -∞ the curve approaches [tex]y=0[/tex] but never crosses it.
So the end behaviors of the graph are:
Plot the points on the graph and draw a curve through them.