Respuesta :

[tex]\\ \rm\Rrightarrow g(x)=6(\dfrac{3}{2})^x[/tex]

[tex]\\ \rm\Rrightarrow g(-1)=6(\dfrac{3}{2})^{-1}=6(\dfrac{2}{3})=2(2)=4[/tex]

[tex]\\ \rm\Rrightarrow g(0)=6[/tex]

[tex]\\ \rm\Rrightarrow g(1)=6(\dfrac{3}{2})=3(3)=9[/tex]

[tex]\\ \rm\Rrightarrow g(2)=6\times\dfrac{9}{4}=13.2[/tex]

Attached the graph

Ver imagen Аноним

Answer:

Given function:

[tex]g(x)=6\left(\dfrac{3}{2}\right)^x[/tex]

To find each of the points, substitute the given values of x into the function:

[tex]x=-1 \implies g(-1)=6\left(\dfrac{3}{2}\right)^{-1}=4[/tex]

[tex]x=0 \implies g(0)=6\left(\dfrac{3}{2}\right)^{0}=6[/tex]

[tex]x=1 \implies g(1)=6\left(\dfrac{3}{2}\right)^{1}=9[/tex]

[tex]x=2 \implies g(2)=6\left(\dfrac{3}{2}\right)^{2}=13.5[/tex]

Therefore:

[tex]\large \begin{array}{| c | c | c | c | c |}\cline{1-5} x & -1 & 0 & 1 & 2 \\\cline{1-5} g(x) & 4 & 6 & 9 & 13.5 \\\cline{1-5} \end{array}[/tex]

As the function is exponential, there is a horizontal asymptote at [tex]y=0[/tex].

Therefore, as [tex]x[/tex] approaches -∞ the curve approaches [tex]y=0[/tex] but never crosses it.

So the end behaviors of the graph are:

  • [tex]\textsf{As }x \rightarrow - \infty, \:\:g(x) \rightarrow 0[/tex]
  • [tex]\textsf{As }x \rightarrow \infty, \:\:g(x) \rightarrow \infty[/tex]

Plot the points on the graph and draw a curve through them.

Ver imagen semsee45