Calculate the slope of the line between each pair of coordinates.
a. A: (3, 6) and B: (4, -3)
b. C: (-5, -3) and D: (-3, -7)

Respuesta :

Answer
a. -9
b. -2
Slope is found by subtracting
(Y2 - Y1 ) over (X2 - X1)
So for a.
(-3-6) over (4-3) = -9/1 or -9
So for b.
(-7-(-3)) over (-3-(-5)) = -4/2 or -2
**Remember when you minus a minus it becomes a plus

SOLVING

[tex]\Large\maltese\underline{\textsf{A. What is Asked}}[/tex]

Calculate the slope of the line between each pair of co-ordinates

[tex]\Large\maltese\underline{\textsf{B. This problem has been solved!}}[/tex]

[tex]\LARGE\textsf{Question 1}}[/tex]

The points given are,

[tex]\begin{cases} \bf{(3,6)} \\ \bf{(4,-3) \end{cases}[/tex]

To find the slope [tex]\textbf{M}[/tex] of this line,

we will utilise the [tex]\textbf{Slope Formula}[/tex].

The first thing to do is

to put in the co-ordinates

of the two points given.

[tex]\bf{\dfrac{-3-6}{4-3}}[/tex] | subtract on top and bottom

[tex]\bf{\dfrac{-9}{1}}[/tex] | divide on top and bottom

[tex]\bf{-9}[/tex]

[tex]\LARGE\textsf{Question 2}[/tex]

The points given this time are,

[tex]\begin{cases} \bf{(-5,-3)} \\ \bf{(-3,-7)} \end{cases}}[/tex]

Last time we needed to

put in the co-ordinates.

Similarly, we ought to

put in the co-ordinates

in this problem.

[tex]\bf{\dfrac{-7-(-3)}{-3-(-5)}}[/tex] | simplify

[tex]\bf{\dfrac{-7+3}{-3+5}}[/tex] | add on top and bottom

[tex]\bf{\dfrac{-4}{2}}[/tex] | divide on top and bottom

[tex]\bf{-2}[/tex]

[tex]\cline{1-2}[/tex]

[tex]\bf{Result:}[/tex]

                         [tex]\bf{\begin{cases}\bf{Slope=-9} \\ \bf{Slope=-2} \end{cases}[/tex]

[tex]\LARGE\boxed{\bf{aesthetic \not1 \theta l}}[/tex]